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Abstract. A complete discussion of the constraints on the Michel parameters and the ambiguities of their
interpretation is presented. Estimators of new physics, optimized for a very wide class of hypotheses and
models, are proposed.

1 Introduction

The leptonic decay of a charged lepton l−1 → l−2 ν1 ν̄2 is
described by its Michel parameters [1–4]. Complementary
parameters must be introduced [5] to describe the sec-
ondary lepton polarization. The measurements of all the
parameters and the cross-section for the ν1 l−2 → l−1 ν2 re-
action allow to put upper limits on all the non-V-A ampli-
tudes [5,6] and “prove experimentally” the V-A structure
of the weak interaction.

In the case of the µ lepton, this program was followed
and successfully completed fifteen years ago [6,7].

For the τ lepton, it is customary [7–9] to present the
experimental results, in a similar way, as upper values of
the possible coupling constants. However, the validity of
the Standard Model is today so well established, that the
interest of τ Michel parameter measurements is no more
to prove the V-A structure but to look for small devia-
tions from its predictions that would be evidence of new
physics. Moreover, the additional measurements, which
are necessary to complete the experimental proof of the
V-A structure, will not be performed in a foreseeable fu-
ture, while large statistics of τ pairs will soon be available
at B-factories, allowing more precise measurements of the
Michel parameters.

Therefore it seems worthwhile to look for the com-
binations of the measured parameters which are the most
sensitive to non-standard effects. This is the aim of the
present paper.

2 The general framework

If only the momentum of the final state charged lepton is
measured, the decay of a polarized τ is entirely described,
in its centre-of-mass, by the distribution

1
x2Γ

dΓ

dΩdx
=W0(x) + Pτ W1(x) cos θ , (1)
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Table 1. Contributions of neutral currents to the gγ
ij coupling

constants

Neutral
current

Charged coupling constants

V gV
LL gV

RR gS
LL gS

RR

S gV
LR gV

RL gS
LR gT

LR gS
RL gT

RL

gS
LR = 2gT

LR gS
RL = 2gT

RL

T gS
LR gT

LR gS
RL gT

RL

gS
LR = −6gT

LR gS
RL = −6gT

RL

where Pτ is the τ polarization, θ the angle between the
polarization and the charged lepton momentum and x =
El/E

max
l the normalized lepton energy.

Taking advantage of the weak interaction short range,
the decay can be represented by the most general four
fermion contact interaction [1–4], written below in the he-
licity projection formalism [6, 10–12]:

M = 4
Gτl√
2

∑
γ=S,V,T
i,j=R,L

gγ
ij 〈l̄i|Γ γ | (νl)n〉〈(ν̄τ )m |Γγ |τj〉,

l = e, µ . (2)

Gτl is the absolute coupling strength; the g
γ
ij are ten com-

plex coupling constants describing the relative contribu-
tion of scalar (ΓS = 1), vector (ΓV = γµ), and tensor
(ΓT = 1√

2
σµν) interactions, respectively, for given chiral-

ities j, i of the τ and the charged decay lepton. The neu-
trino chiralities n and m are uniquely defined for a given
set {γ, i, j} by the chirality selections rules: conservation
for vector coupling, reversal for scalar and tensor.

The same matrix element describes also the contribu-
tions of possible lepton-number-violating neutral currents
[13]. The relationship between the neutral currents and
the gγ

ij constants, as given by the Fierz transformation, is
summarized in Table 1.
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Fig. 1. The allowed domain in the space of the three param-
eters, ρ, ξ, and ξδ

The matrix element (2) can be used to compute the
functions W0 and W1 of 1. They are described by the four
real Michel parameters: ρ and η for W0, ξ and ξδ for W1.

A convenient way to express the relation between the
Michel parameters and the gγ

ij coupling constants is to
introduce [14] the six positive parameters

α+ = |gV
RL|2 + |gS

RL + 6g
T
RL|2/16 ,

α− = |gV
LR|2 + |gS

LR + 6g
T
LR|2/16 , (3)

β+ = |gV
RR|2 + |gS

RR|2/4 ,
β− = |gV

LL|2 + |gS
LL|2/4 , (4)

γ+ = (3/16)|gS
RL − 2gT

RL|2 ,
γ− = (3/16)|gS

LR − 2gT
LR|2 . (5)

They satisfy the relation

1 = α+ + α− + β+ + β− + γ+ + γ− (6)

= |gV
RR|2 + |gV

LR|2 + |gV
RL|2 + |gV

LL|2

+
1
4
(|gS

RR|2 + |gS
LR|2 + |gS

RL|2 + |gS
LL|2)

+3 (|gT
LR|2 + |gT

RL|2) ,
which means that the normalization is absorbed in the
definition of Gτl.

The ρ, ξ, and ξδ parameters are given by

ρ =
3
4
(β+ + β−) + (γ+ + γ−) ,

ξ = 3 (α− − α+) + (β− − β+) +
7
3
(γ+ − γ−) , (7)

ξδ =
3
4
(β− − β+) + (γ+ − γ−) .

Table 2. Values of the coupling constants in the Standard
Model and upper values compatible with the standard model
prediction: ξ = 1, ρ = ξδ = 3/4

|gV
LL| |gV

LR| |gV
RL| |gV

RR|
maximum 1 1 1 1
SM 1 0 0 0

maximum
ρ = ξδ = 3/4, ξ = 1

1 0 1/2 0

|gS
LL| |gS

LR| |gS
RL| |gS

RR|
maximum 2 2 2 2
SM 0 0 0 0

maximum
ρ = ξδ = 3/4, ξ = 1

2 0 2 0

- |gT
LR| |gT

RL| -

maximum - 1/
√
3 1/

√
3 -

SM - 0 0 -
maximum

ρ = ξδ = 3/4, ξ = 1
- 0 1/2 -

In geometrical terms, the point of coordinates ρ, ξ, and
ξδ, in the space of the parameters, is the barycentre of six
points, A±, B±, and C± with the weights α±, β±, and
γ± respectively. Since the point B− lies on the A+C+

segment, and B+ on A−C−, the allowed domain is just
the tetrahedron A+A−C+C− (Fig. 1).

The Standard Model prediction, |gV
LL| = 1, implies

ρ = ξδ = 3/4 , ξ = 1 and is represented geometrically
by the point B−, but β− = 1 does not imply |gV

LL| = 1,
and the location of B− on the A+C+ segment introduces
further ambiguities.

The value β− = 1 is also obtained if |gS
LL| = 2 and

all the other constants equal to zero, and there is another
possibility to reproduce the parameters predicted by the
Standard Model, namely β− = β+ = α− = γ− = 0,
γ+ = 3/4, and α+ = 1/4. So, with ξ = 1, ρ = ξδ = 3/4,
|gV

RL| can reach an upper value of 1/2 and it is also possible
that all the constants vanish but gS

RL and g
T
RL. In this last

case, we get

|gS
RL|2 + 12 |gT

RL|2 = 4 , 2 |gT
RL| = −|gS

RL| cosφST , (8)

where φST is the relative phase of the two amplitudes.
Accordingly, the upper possible values of |gS

RL| and |gT
RL|

are 2 and 1/2 respectively.
The upper values of the constants, compatible with

the Standard Model prediction, are given in Table 2. More
stringent experimental limits [15] are not the consequences
of the data but of additional hypotheses or constraints. As
the physically interesting region is the neighbourhood of
|gV

LL| = 1, no relevant bound on the non-standard τ left-
handed couplings can be extracted from the measurement
of ρ, ξ and ξδ without additional hypotheses.

Since the Standard Model prediction is represented by
B− which is located on A+C+, a convenient set of param-
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Fig. 2. The allowed domain in the α, β plane for a given value
of ρ

eters is given by two equations of the A+C+ line and a
third variable which specify the position on the segment.
Using the equations of the faces A+C+A− and A+C+C−
gives expressions which are positive for points inside the
tetrahedron. They are more usefully combined into

Pτ
R =

1
2
[ 1 +

ξ

3
− 16
9
ξδ ] = β+ + α− + γ− (9)

= |gV
RR|2 + |gV

LR|2 + 1
4

|gS
RR|2 + 1

4
|gS

LR|2 + 3|gT
LR|2 ,

Sτ
R =

2
3
[ρ− ξδ] = β+ +

4
3
γ− (10)

= |gV
RR|2 + 1

4
|gS

RR|2 + 1
4

|gS
LR − 2gT

LR|2 ,

which, owing to their normalization, can be interpreted as
fractional contributions of τ right-handed couplings to its
leptonic partial width and used to bound the gγ

iR ampli-
tudes. For the third parameter, ξ or ρ can be chosen.

The last Michel parameter η can be written

η = 2Re [ gV ∗
RL (g

S
LR + 6g

T
LR)/4 ]

+2Re [ gV ∗
LR (g

S
RL + 6g

T
RL)/4 ] + Re [ gV ∗

LL g
S
RR/2 ]

+Re [ gV ∗
RR g

S
LL/2 ] . (11)

This expression implies the inequality

|η| ≤ α+
β

2
≤ 1− ρ+ 1

4
βmax(ρ) , (12)

where, α = α+ + α−, β = β+ + β−, and βmax(ρ) is the
greatest value of β, compatible with the value of ρ. Fig-
ure 2 shows that βmax is reached for γ = 1 − α − β = 0
when ρ < 3/4 and for α = 0 for ρ > 3/4, leading to the
rather weak bound:

|η| ≤ 1− 2
3
ρ

(
ρ ≤ 3

4

)
, |η| ≤ 2(1− ρ)

(
ρ ≥ 3

4

)
(13)

3 The restricted domain

If only charged vector currents are present (gS
ij = 0, g

T
ij =

0), we have γ+ = γ− = 0 and the allowed domain is
the A+A−B+B− tetrahedron that we call the restricted
domain.

It is interesting to remark that, for a very wide class of
models and hypotheses, the allowed domain for the Michel
parameters is this restricted domain1 and that getting a
point outside it requires the conspiracy of scalar and ten-
sor couplings [14].

We give below a list of general hypotheses leading to
the restricted domain. We use for that the Lorentz covari-
ance of the charged and neutral currents and the proper-
ties of the Fierz transformation only. More specific con-
straints associated with the hypothesis of a single boson
exchange can be found in [12] and [16].

When the allowed domain of the parameters is the re-
stricted one, the point B−, which is the Standard Model
prediction, is one of its vertices, therefore there is a third
positive quantity whose vanishing is associated with this
point. We use for it 1− 4ρ/3. Its precise physical meaning
and the ambiguities in the interpretation of the measure-
ments depend nevertheless on the hypothesis that lead to
the restriction.

gS
ij = 0

If all the scalar coupling constants vanish, the condition
α+ = 0 implies γ+ = 0, therefore the complete domain is
not allowed. Defining the new parametrization

α+
NS = |gV

RL|2 , γ+
NS = 3|gT

RL|2 , (14)

α−
NS = |gV

LR|2 , γ−
NS = 3|gT

LR|2 ,

we get the relations

1 = α+
NS + α

−
NS + β

+ + β− + γ+
NS + γ

−
NS , (15)

ρ =
3
4
(β+ + β−) +

1
4
(γ+

NS + γ
−
NS) ,

ξ = 3 (α−
NS − α+

NS) + (β
− − β+)− 5

3
(γ+

NS − γ−
NS) , (16)

ξδ =
3
4
(β− − β+) +

1
4
(γ+

NS − γ−
NS) .

The point of coordinates ρ, ξ, and ξδ is now the barycentre
of A±, B±, and two new points C±

NS ≡ D± whose coor-
dinates are (1/4, ∓5/3, ±1/4) but, since D+ is located
on the A+B− segment and D− on A−B+ (Fig. 1), the al-
lowed region is the restricted domain. The third constraint
can be written, in terms of the gγ

ij ’s, as

1− 4
3
ρ = |gV

RL|2 + |gV
LR|2 + 2 (|gT

RL|2 + |gT
LR|2) . (17)

Measurements represented by B− imply a V-A structure.
The combination of charged, vector and tensor cur-

rents belongs to this class.

1 This result is almost obvious from the “charge retention”
formalism, where γ+ and γ− are related to (neutral) tensor
currents [4], and Table 1
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gT
ij = 0

If gT
ij = 0, we define

α+
NT = |gV

RL|2 , γ+
NT =

1
4

|gS
RL|2 , (18)

α−
NT = |gV

LR|2 , γ−
NT =

1
4

|gS
LR|2 ,

and obtain

1 = α+
NT + α

−
NT + β

+ + β− + γ+
NT + γ

−
NT , (19)

ρ =
3
4
(β+ + β− + γ+

NT + γ
−
NT) ,

ξ = 3 (α−
NT − α+

NT) + (β
− − β+) + (γ+

NT − γ−
NT) , (20)

ξδ =
3
4
(β− − β+ + γ+

NT − γ−
NT) .

Here the points C+
NT and C−

NT coincide with the points
B− and B+ respectively. The allowed domain is then the
restricted one. The third constraint is

1− 4
3
ρ = |gV

RL|2 + |gV
LR|2 . (21)

The vector couplings only are bounded by the measure-
ment of ρ, due to the ambiguity between B± and C∓

NT.
The combination of charged, vector and scalar currents

and neutral, vector currents belongs to this class.

gS
RL = 2gT

RL, gS
LR = 2gT

LR

The restriction of the domain is evident from 5. The third
constraint can be written

1− 4
3
ρ = |gV

RL|2 + |gV
LR|2 + 1

4
(|gS

LR|2 + |gS
RL|2)

+ 3 (|gT
LR|2 + |gT

RL|2) . (22)
Measurements represented by B− imply a V-A structure.

The combination of charged, vector currents and neu-
tral, vector and scalar currents belongs to this class.

“V-A plus something”2

In an especially interesting family of models [16] the decay
is described by the addition of a single, non-
standard contribution to the Standard Model amplitude.
Their predictions are perfectly transparent in the present
geometrical presentation. They follow at once from the
definitions of the parameters and the properties displayed
in Table 1.

– If the non-standard contribution is a charged vector
current, all the restricted domain is allowed. The only
new prediction is η = 0.

2 The title of this paragraph is borrowed from C. Nelson [17]

– The hypothesis of an additional charged scalar current
belongs to the second of the above defined classes with
the further conditions α±

NT = 0. The allowed domain
is then the B+B− segment (ρ = δ = 3/4), since the
points C±

NT and B
∓ are identical.

– The contribution of a neutral vector is included in the
same class with α±

NT = γ
±
NT = 0. The allowed domain

is again the B+B− segment.
– The hypothesis of an additional neutral scalar leads to
γ+ = γ− = 0 (third class) and β+ = 0. The allowed
domain is the two-dimensional one, spanned by the
points A+, A−, and B−. The corresponding condition
is ρ = ξδ and the bound on η is stricter: |η| ≤ 1−4ρ/3.

4 Looking for new physics

In the standard approach described in Sect. 1, the indica-
tors of new physics constructed with the Michel parame-
ters are, besides the η parameter itself, the two positive
quantities Pτ

R and Sτ
R, defined by 9 and 10, which bound

the coupling constants and can be interpreted as (non-
independent) contributions of new physics to the τ decay.

Using the world-average values of the parameters [7],
under the hypothesis of e-µ universality, yields

Pτ
R = 0.006± 0.028 , Sτ

R = 0.001± 0.016 .

If hypotheses are made that reduce the dimensionality
of the domain, the determination of the parameters can
be improved by a constrained fit. For instance, if the do-
main is the B+B− segment, there is only one free parame-
ter. Neglecting the correlations between the measurements
and taking advantage of the near equality of the errors on
ξ and 4ξδ/3, this parameter is merely their average ξ̄ and
the quantity Pτ

R reduces to

1
2
[ 1− ξ̄ ] = 1

2

[
1− ξ

2
− 2
3
ξδ

]
. (23)

It is noteworthy that the same strategy can be fol-
lowed under the much weaker hypotheses that imply the
restricted domain. This is due to the fact that the mea-
sured value of ρ forces the point which represents the mea-
surements in the parameter space to lie on the edge of the
domain.

Quantitatively, the difference of ξ and 4ξδ/3 is
bounded by the inequality

∣∣ξ − 4
3
ξδ

∣∣ ≤ 3
(
1− 4

3
ρ

)
. (24)

From the values of the errors [7] σ(ξ − 4ξδ/3) = 0.044
and 4σ(ρ) = 0.036, it is clear that there is no physically
relevant information in ξ − 4ξδ/3 and that even the τ -l
universality prediction [12] δ = 3/4 is better tested by the
measurement of ρ than by comparing ξ and ξδ.

Assuming only the restricted domain, the indicators of
new physics are

1− 4
3
ρ = 0.004± 0.012 ,

1
2
[ 1− ξ̄ ] = 0.002± 0.011 .
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They bring a clear improvement of the sensitivity with
respect to Pτ

R and Sτ
R.

It must be noted that 1− ξ̄ is not strictly positive but
that excursions of ξ̄ beyond 1 are severely limited by the
inequality

ξ̄ − 1 ≤ 1
2

(
1− 4

3
ρ

)
, (25)

since σ(ξ̄) = 0.022 and 2σ(ρ)/3 = 0.006.

5 Conclusion

A complete study of the constraints on the Michel param-
eters and the ambiguities of their interpretation has been
presented.

It has been shown that, for a very wide class of hy-
potheses and models, which cause the same restriction of
the parameter domain, the best indicators of new physics
are the combinations, 1 − 4ρ/3 and (1 − ξ̄)/2 = (1/2 −
ξ/4− ξδ/3).

Compared to the customary estimators, their sensitiv-
ities are roughly twice better. The third available param-
eter, ξ − 4ξδ/3, is better determined by the geometry of
the domain and the value of ρ than by its measurement.

A Appendix: Measurement of the parameters

In the numerical exercise above, the error correlations
were neglected and the e-µ universality was assumed. We
will discuss briefly this two approximations.

At low energy, where the τ ’s are unpolarized, the ρ and
η parameters are determined by the single-lepton labora-
tory energy distributions and the ξ and ξδ parameters by
the spin-correlated τ+ τ− decay distributions. Estimates
of the covariance matrices for measurements at 4 GeV and
10 GeV can be found in [8].

At the Z peak, the τ polarization makes ambiguous the
interpretation of a single tau leptonic-decay distribution
and, since the transverse spin correlations depend on the
Z couplings, only the helicity correlation of τ+ and τ−,
which is equal to -1, is used. If the decay distribution of a
τ− in the channel a, is written,

Wa(x−) = fa(x−) + Pτ ga(x−) , (26)

the correlated distribution for the a and b channels reads
then

Wab(x−, x+) = fa(x−)fb(x+) + ga(x−)gb(x+) (27)
+Pτ [ fa(x−)gb(x+) + fb(x+)ga(x−) ] ,

where Pτ is the τ− polarization.
For a hadronic decay, with the notations of [19], x± is

the optimal variable ω and the decay distribution is

W (ω) = f̂(ω)[1 + ξh Pτ ω] , (28)

where the ξh parameter is equal to 1 in the standard
model3.

For a leptonic decay, x± is the normalized energy of
the charged lepton, y = (El/E

max
l )LAB. Defining the pa-

rameters,

ρ̃ = 1− 4
3
ρ , δ̃ = ξ − 4

3
ξδ , η̃ =

ml

mτ
η , (29)

which vanish in the Standard model, and the functions

h0(y) =
1
3
(5− 9y2 + 4y3) , (30)

h1(y) =
1
3
(1− 9y2 + 8y3) ,

h2(y) =
1
3
(1− 12y + 27y2 − 16y3) ,

h3(y) = 12(1− y)2 ,
the decay distribution reads

W (y) = fρ,η(y) + Pτgξ,ξδ(y) = (31)
1

1 + 4η̃
{
h0(y) + [ρ̃+ Pτξ]h1(y) + δ̃Pτh2(y) + η̃h3(y)

}
.

The presence of the polarization allows the measurement
of a new parameter, δ̃Pτ , but, as previously mentioned, it
also introduces an ambiguity in the interpretation of the
first one which is now ρ̃+ Pτξ.

The same kind of ambiguity also arises in the e-µ cor-
relation. For Pτ = 0, only the parameters, δµ, δe, and the
product ξµξe are measurable [8]. For Pτ �= 0, neglecting η̃
for the sake of clarity, and keeping only terms of the first
order in the Standard Model violating parameters, ρ̃, δ̃
and 1− ξ, the correlated distribution can be written
W (ye, yµ) ∼ h0(yµ)h0(ye)− h1(yµ)h1(ye)

+[ρ̃e + Pτξe]h0(yµ)h1(ye) + [ρ̃µ + Pτξµ]h0(ye)h1(yµ)
+[ξµ + ξe + Pτ (ρ̃e + ρ̃µ)]h1(yµ)h1(ye)

+δ̃eh2(ye)[h1(yµ) + Pτh0(yµ)] (32)

+δ̃µh2(yµ)[h1(ye) + Pτh0(ye)] .

Even if Pτ is known, there is only three measurements
to determine the four parameters ρµ, ρe, ξµ and ξe. The
ambiguity is displaced but not suppressed4.

Using several known values of the polarization, all the
parameters can be determined from single-decay distribu-
tions. At the Z peak, and/or with polarized beam, the τ
polarization is a function of the production angle θ, hence
the Michel parameters can be measured by the θ-y corre-
lation [21].

3 Since Pτ+ = −Pτ− and ξτ+

h = −ξτ−
h , the decay distribution

is independent of the τ charge. In the case of τ → ν3π, this last
property is true only if no pseudoscalar variable constructed
from the π momenta is used in the definition of ω. A more
general analysis is presented in [18]

4 Therefore, the analysis [20] necessarily uses additional hy-
potheses
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Table 3. Ideal statistical errors on the Michel parameters
(in%) and their correlation coefficients for 2×105 τ+τ− pairs
at the Z peak

σ(ρ) σ(ξ) σ(ξδ) σ(ξ − 4
3ξδ)

µ 2.3 6.0 4.0 7.3

e 1.3 5.5 3.9 7.2

C(ρ, ξ) C(ρ, ξδ) C(ξ, ξδ)

µ 0.24 0.15 0.18

e −0.21 −0.06 0.10

The other measurements [15, 22–24] use all the hadron-
hadron, lepton-lepton and hadron-lepton final states to
obtain the complete set of parameters up to a global sign
ambiguity which is solved, for instance, by the result of
[21].

To calculate the covariance matrix V of the Michel pa-
rameter measurements, we assume that, in an ideal exper-
iment at the Z peak, similar to [15, 22–24], all the decays
into µ, e, π, ρ and a1 and their correlations are used to
determine the Michel parameters, the hadronic, ξh param-
eters and the τ polarization. Asymptotically, V is given by

(
V −1)

ij
∼ −

∑
s

Ns

∫ ∫
Ws
∂2 logWs

∂αi∂αj
dx+dx− , (33)

where s labels one of the twenty classes of events, e-µ, e-e,
e-π, etc, and Ns is the number of events in the class. The
computation is made straightforward by the fact that the
distributions are quadratic functions of all the parameters,
except η which appears in the normalizations.

The computed covariance matrix is similar to its esti-
mations [8] for measurements at lower energy. The largest
correlation coefficients are C(ρµ, ηµ) = 0.82 and C(ξµ, ηµ)
= 0.42. The numerical values relevant for the analysis of
Sect. 4 are given in Table 3.

For the τ → eνν̄ channel, the inequality σ(δ̃) > 3σ(ρ̃)
is satisfied and the weights of ξ and 4ξδ/3 in their opti-
mal combination are 0.47 and 0.53 respectively. All the
hypotheses made in Sect. 4 are verified.

For the τ → µνν̄ channel, the weights are 0.43 and
0.57 but, owing to the correlations with ηµ, the ideal error
on δ̃ is slightly smaller than 3σ(ρ̃). However, in a more
realistic estimation, the inefficiencies in the identification
of the various decay channels reduce the statistics for the
classes of events with two analysed decays and increase it
for the events with only one identified decay which con-
tribute mainly to the measurement of ρ. Therefore, the
same analysis scheme remains basically valid.

From an experimental point of view, the universality
hypothesis allows to constrain the value of ηµ by the mea-
surement of the τ → eνν̄ and τ → µνν̄ branching ratios
[15,20].

If the variation of the parameters is limited to the
above defined restricted domain, the deviations of the pa-
rameters from their Standard Model values must have the
same sign in the e and µ channels. Therefore the universal-
ity hypothesis can perhaps reduce the sensitivity to these
deviations but complete cancelations are not possible.
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